| 注册
首页|期刊导航|中国机械工程|基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用

基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用

张弦 王宏力

中国机械工程2011,Vol.22Issue(21):2572-2576,5.
中国机械工程2011,Vol.22Issue(21):2572-2576,5.

基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用

LSSVM Based on PSO and Its Applications to Time Series Prediction

张弦 1王宏力1

作者信息

  • 1. 第二炮兵工程学院,西安710025
  • 折叠

摘要

Abstract

In order to improve the generalization performance and prediction accuracy of LSSVM based time series prediction,a PSO based LSSVM was studied.Firstly,a certain number of LSSVMs were trained by using training samples and then cross-validation error was applied to evaluate the generalization performance of the LSSVMs.Finally,PSO was applied to search for the optimal LSSVM with the smallest cross-validation error.Experiments on time series prediction indicate that LSSVM optimized by PSO has better prediction performance than that not optimized and conventional prediction methods.

关键词

最小二乘支持向量机/粒子群优化/交叉验证/时间序列预测

Key words

least square support vector machine(LSSVM)/particle swarm optimization(PSO)/cross-validation/time series prediction

分类

信息技术与安全科学

引用本文复制引用

张弦,王宏力..基于粒子群优化的最小二乘支持向量机在时间序列预测中的应用[J].中国机械工程,2011,22(21):2572-2576,5.

中国机械工程

OA北大核心CSCDCSTPCD

1004-132X

访问量0
|
下载量0
段落导航相关论文