| 注册
首页|期刊导航|中南民族大学学报:自然科学版|基于云自适应遗传算法的改进BP算法

基于云自适应遗传算法的改进BP算法

吴立锋 程林辉

中南民族大学学报:自然科学版2011,Vol.30Issue(4):98-101,4.
中南民族大学学报:自然科学版2011,Vol.30Issue(4):98-101,4.

基于云自适应遗传算法的改进BP算法

An Improved BP Algorithm Based on Cloud Self-Adaptive Genetic Algorithm

吴立锋 1程林辉1

作者信息

  • 1. 中南民族大学计算机科学学院,武汉430074
  • 折叠

摘要

Abstract

The standard BP algorithm is sensitive to the initial weights, converges slowly and is easy to trap into local minimum. Aiming at these limitations of the standard BP algorithm, combining the randomness and stability of the cloud droplets in the normal cloud model, and the global search ability and fast convergence of the genetic algorithm, the cloud self-adaptive genetic BP algorithm is put forward in this paper. This algorithm firstly combines the cloud model and the genetic algorithm to adjust the weights and threshold values of the neural network. The improved self-adaptive crossover probability and mutation probability are generated by X-conditional cloud generator. The results of the experiment show that the convergence speed of the cloud self-adaptive genetic BP algorithm is faster than that of the standard BP algorithm.

关键词

云模型/遗传算法/云自适应遗传BP算法/神经网络

Key words

cloud model/genetic algorithm/cloud self-adaptive genetic back propogation algorithm/neural network

分类

信息技术与安全科学

引用本文复制引用

吴立锋,程林辉..基于云自适应遗传算法的改进BP算法[J].中南民族大学学报:自然科学版,2011,30(4):98-101,4.

基金项目

中南民族大学自然科学基金资助项目 ()

中南民族大学学报:自然科学版

OACSTPCD

1672-4321

访问量0
|
下载量0
段落导航相关论文