| 注册
首页|期刊导航|兵工自动化|一种基于信息素变化的改进蚁群算法

一种基于信息素变化的改进蚁群算法

刘海军 彭绍雄 高传斌 邹强

兵工自动化2012,Vol.31Issue(4):28-31,4.
兵工自动化2012,Vol.31Issue(4):28-31,4.DOI:10.3969/j.issn.1006-1576.2012.04.008

一种基于信息素变化的改进蚁群算法

An Improved Ant Colony Algorithm Based on Pheromone Changing

刘海军 1彭绍雄 2高传斌 1邹强2

作者信息

  • 1. 海军航空工程学院研究生管理大队,山东烟台264001
  • 2. 海军航空工程学院飞行器工程系,山东烟台264001
  • 折叠

摘要

Abstract

The ant colony algorithm search time is long and it is easy to fall into the local optimal. Put forward the amplitude descending local phenomenon renovating model. Through analyzing why the present algorithm fall into the local optimal, and using ant colony recombining algorithm, and according to hypothesis deduce amplitude descending local phenomenon renovating model, and analyze influence of model on algorithm complexity. Then use four pheromone renovating models to solve the shortest path problems. The simulation result shows that the model can restrain the algorithm to fall into the local optimal.

关键词

蚁群算法/增幅递减/局部最优/信息素变化

Key words

ant colony algorithm/ amplitude descending/ local optimal problem/ growth changing

分类

信息技术与安全科学

引用本文复制引用

刘海军,彭绍雄,高传斌,邹强..一种基于信息素变化的改进蚁群算法[J].兵工自动化,2012,31(4):28-31,4.

兵工自动化

OACSTPCD

1006-1576

访问量0
|
下载量0
段落导航相关论文