| 注册
首页|期刊导航|电子学报|一种基于改进型PCNN的织物疵点图像自适应分割方法

一种基于改进型PCNN的织物疵点图像自适应分割方法

祝双武 郝重阳

电子学报2012,Vol.40Issue(3):611-616,6.
电子学报2012,Vol.40Issue(3):611-616,6.DOI:10.3969/j.issn.0372-2112.2012.03.034

一种基于改进型PCNN的织物疵点图像自适应分割方法

An Approach for Fabric Defect Image Segmentation Based on the Improved Conventional PCNN Model

祝双武 1郝重阳2

作者信息

  • 1. 西安工程大学纺织与材料学院,陕西西安710048
  • 2. 西北工业大学电子信息学院,陕西西安710072
  • 折叠

摘要

Abstract

An approach is proposed for fabric defect detection based on the improved conventional pulse coupled neural network (PCNN) model. For these too many parameters of conventional PCNN.it is difficult to get die adaptive parameters. The problem can be solved in the proposed way, in which optimal number of iteration to segment fabric defect image automatically is determined based on minimum difference of uniformity within region. Segmentations on various defect images are implemented with the proposed approach and die experimental results demonstrate its reliability and validity.

关键词

脉冲耦合神经网络/织物疵点/图像分割/区域内均匀度

Key words

pulse coupled neural network(PCNN)/fabric defect/ image segmentation/uniformity within region

分类

信息技术与安全科学

引用本文复制引用

祝双武,郝重阳..一种基于改进型PCNN的织物疵点图像自适应分割方法[J].电子学报,2012,40(3):611-616,6.

基金项目

陕西省教育厅专项基金项目(No.08JK303) (No.08JK303)

博士启动基金(No.BS1004) (No.BS1004)

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文