| 注册
首页|期刊导航|电网技术|基于主成分分析与人工神经网络的风电功率预测

基于主成分分析与人工神经网络的风电功率预测

周松林 茆美琴 苏建徽

电网技术2011,Vol.35Issue(9):128-132,5.
电网技术2011,Vol.35Issue(9):128-132,5.

基于主成分分析与人工神经网络的风电功率预测

Prediction of Wind Power Based on Principal Component Analysis and Artificial Neural Network

周松林 1茆美琴 1苏建徽1

作者信息

  • 1. 教育部光伏系统工程研究中心(合肥工业大学),安徽省合肥市230009
  • 折叠

摘要

Abstract

A wind power prediction model based on integration of principal component analysis (PCA) with back-propagation (BP) neural network is proposed. The PCA is used to preprocess original multi-dimensional input variables and principal components of input variables are chosen as the input of BP neural network, by this way either the dimensions of input variables can be reduced or correlativity among input variables can be eliminated, thus both convergence and stability of neural network can be improved. Simulation results show that the accuracy of wind power prediction by the proposed PCA-BP model is better than that by common neural network models and the proposed model possesses better generalization performance.

关键词

风电功率预测/主成分分析/前馈神经网络/泛化性能

Key words

wind power prediction/principal component analysis/back-propagation (BP) neural network/generalization performance

分类

信息技术与安全科学

引用本文复制引用

周松林,茆美琴,苏建徽..基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132,5.

基金项目

国家重点基础研究发展计划项目(973项目)(2009CB219708). (973项目)

电网技术

OA北大核心CSCDCSTPCD

1000-3673

访问量0
|
下载量0
段落导航相关论文