| 注册
首页|期刊导航|可再生能源|基于BP神经网络与遗传算法风电场超短期风速预测优化研究

基于BP神经网络与遗传算法风电场超短期风速预测优化研究

陈忠

可再生能源2012,Vol.30Issue(2):32-36,5.
可再生能源2012,Vol.30Issue(2):32-36,5.

基于BP神经网络与遗传算法风电场超短期风速预测优化研究

Optimazation study on ultra-short term wind speed forecasting of wind farms based on BP neural network and genetic algorithm

陈忠1

作者信息

  • 1. 广东水利电力职业技术学院电力工程系,广东广州 510635
  • 折叠

摘要

Abstract

Wind speed forecastion is very important to dispatch wind power grid connected. A wind speed prediction model based on BP neural network is established; and from the characteristics of BP algorithm and genetic algorithm , considered network structures hard to certain and slow convergence speed ,a multi-population genetic algorithm was proposed to optimize the structure and the initial weights synchronously of BP networks, Through practical examples shows that the convergence steps and computing time of optimized BP algorithm has significantly decreased ,and a better prediction accuracy. The overall performance of the network has been remarkably improved.

关键词

BP神经网络/遗传算法/多种群优化/风速预测

Key words

BP neural network/ genetic algorithm/ multi-population optimize/ wind speed forecast

分类

能源科技

引用本文复制引用

陈忠..基于BP神经网络与遗传算法风电场超短期风速预测优化研究[J].可再生能源,2012,30(2):32-36,5.

基金项目

广东水电建设重点攻关项目(纵向201000010). (纵向201000010)

可再生能源

OA北大核心CSTPCD

1671-5292

访问量5
|
下载量0
段落导航相关论文