| 注册
首页|期刊导航|宁夏大学学报(自然科学版)|面向多类学习问题的核最近表面分类方法

面向多类学习问题的核最近表面分类方法

殷士勇

宁夏大学学报(自然科学版)2011,Vol.32Issue(4):341-345,5.
宁夏大学学报(自然科学版)2011,Vol.32Issue(4):341-345,5.DOI:64-1006/N.20110714.1802.002

面向多类学习问题的核最近表面分类方法

Kernel Nearest Surface Classification Methods for Multi-class Learning Problems

殷士勇1

作者信息

  • 1. 盐城纺织职业技术学院机电工程系,江苏盐城224000
  • 折叠

摘要

Abstract

The nearest neighbor decision rules have a good classification on nonlinear and imbalanced data sets, but have no learning process. A method called as kernel nearest surface classifier is proposed to condense the training samples with clustering, and then make decision using the nearest neighbor rule. The method is compared with such as common-used statistical classification methods through the experiments. The results show that the proposed method has many merits, such as fast decision speed and small memory space requirement, and can also solve the classification problem of the imbalance data set effectively.

关键词

核最近表面分类/机器学习/近邻法/聚类

Key words

kernel nearest surface classification method/ machine learning/ nearest neighbor rule/ clustering

分类

信息技术与安全科学

引用本文复制引用

殷士勇..面向多类学习问题的核最近表面分类方法[J].宁夏大学学报(自然科学版),2011,32(4):341-345,5.

基金项目

江苏省自然科学基金资助项目(BK2010277) (BK2010277)

宁夏大学学报(自然科学版)

OACHSSCDCSTPCD

0253-2328

访问量0
|
下载量0
段落导航相关论文