四川师范大学学报(自然科学版)2012,Vol.35Issue(1):82-85,4.DOI:10.3969/j.issn.1001-8395.2012.01.018
模糊数值函数强Henstock积分的原函数的刻画定理
The Characterization of the Primitives for Fuzzy Strong Henstock Integrable Functions
摘要
Abstract
A function F is A CG' and F'(x) = f(x) almost everywhere on [0,6] , then/is Henstock integrable on [a, b] and F is the primitive of/. The reverse implication also holds. This fact is also valid for the strong Henstock integral. The primitive of fuzzy Henstock integral is not difierentiable almost everywhere, it is impossible to discuss the primitive of fuzzy strong Henstock integral in sense of Vitali covering. In this paper, by applying the classical theory of real integration to fuzzy integral theory, a characterization of primitives for fuzzy strong Henstock integrable functions is obtained by using the concept of inner variation proposing by Henstock.关键词
强Henstock积分/模糊数值函数/原函数/内部变差Key words
strong Henstock integral/ fuzzy valued functions/ the primitive/ inner variation分类
数理科学引用本文复制引用
贾凤玲,何万生,巩增泰..模糊数值函数强Henstock积分的原函数的刻画定理[J].四川师范大学学报(自然科学版),2012,35(1):82-85,4.基金项目
国家自然科学基金(10771171)和甘肃省教育厅科研基金(0608-04)资助项目 (10771171)