| 注册
首页|期刊导航|水科学进展|新安江产流模型与改进的BP汇流模型耦合应用

新安江产流模型与改进的BP汇流模型耦合应用

阚光远 刘志雨 李致家 姚成 周赛

水科学进展2012,Vol.23Issue(1):21-28,8.
水科学进展2012,Vol.23Issue(1):21-28,8.DOI:32.1309.P.20120104.2012.004

新安江产流模型与改进的BP汇流模型耦合应用

Coupling Xinanjiang runoff generation model with improved BP flow concentration model

阚光远 1刘志雨 2李致家 3姚成 1周赛2

作者信息

  • 1. 河海大学水文水资源学院,江苏南京210098
  • 2. 水资源高效利用与工程安全国家工程研究中心,江苏南京210098
  • 3. 水利部水文局,北京100053
  • 折叠

摘要

Abstract

In order to improve the flow concentration accuracy of the Xinanjiang model and to reduce the influence of personal experiences on the model calibration, a new rainfall-runoff model called XBK (XAJ-BP-KNN) is developed, coupling the Xinanjiang runoff generation model with the improved version of the back propagation ( BP) flow concentration model. The latter uses the BP neural network algorithm to simulate the nonlinear relationship of the flow concentration process. The flow calculated by Xinanjiang runoff model and antecedent flow are used as the XBK inputs to a BP simulation network. The flow inputs are routed by the BP concentration model to the outlet of the network, which forms the hydrograph at the outlet of the BP simulation network. XBK uses the similarity theory and the K-nearest neighbor algorithm for pattern recognition in an effort to correct the simulation error due to the absence of the observed initial flow data. XBK parameters are optimized globally using the combined method of the shuffled complex evolution (SCE-UA) algorithm and the genetic early stopping Levenberg-Marquardt ( LM ) algorithm. The XBK model is applied to the Chengcun watershed. Compared to the original version of the Xinanjiang model, the result shows that a better model simulation can be achieved with XBK. XBK is easy to apply, and the combined global optimization algorithm is able to identify optimal parameter values.

关键词

新安江模型/人工神经网络/反向传播算法/K-最近邻算法/SCE-UA算法

Key words

Xinanjiang model/ artificial neural network/ back propagation algorithm/ K-nearest neighbor algorithm/ SCE-UA algorithmXinanjiang model/ artificial neural network/ back propagation algorithm/ K-nearest neighbor algorithm/ SCE-UA algorithm

分类

天文与地球科学

引用本文复制引用

阚光远,刘志雨,李致家,姚成,周赛..新安江产流模型与改进的BP汇流模型耦合应用[J].水科学进展,2012,23(1):21-28,8.

基金项目

国家重点基础研究发展计划(973)资助项目(2010CB951101) (973)

高等学校博士学科点专项科研基金资助项目(20090094110005) (20090094110005)

水科学进展

OA北大核心CSCDCSTPCD

1001-6791

访问量0
|
下载量0
段落导航相关论文