| 注册
首页|期刊导航|太原理工大学学报|基于2d-距离改进的K-means聚类算法研究

基于2d-距离改进的K-means聚类算法研究

陈福集 蒋芳

太原理工大学学报2012,Vol.43Issue(2):114-118,5.
太原理工大学学报2012,Vol.43Issue(2):114-118,5.

基于2d-距离改进的K-means聚类算法研究

Research on improved K-means Clustering Algorithm Based on Two-distance

陈福集 1蒋芳1

作者信息

  • 1. 福州大学公共管理学院,福州350108
  • 折叠

摘要

Abstract

In order to overcome the shortcoming of original K-means algorithm that randomly selecting clustering center puts much influence on clustering results,prevent the destruction on clustering precision resulted from the existance of isolated points,and reveal the inter relationship between them, this paper adopted DKC value of 2d-distance to pretreat original sample data to distingwish isolated points and determine initial clustering center,so as to eliminater the interrelationship and stablize clustering center. Compared with original algorithm, the improved one is more effective in accuracy.

关键词

2d-距离/K-means算法/初始点选取/孤立点

Key words

2d-distance/ K-means algorithm/ the selection of primitive center/ isolated point

分类

信息技术与安全科学

引用本文复制引用

陈福集,蒋芳..基于2d-距离改进的K-means聚类算法研究[J].太原理工大学学报,2012,43(2):114-118,5.

基金项目

国家杰出青年科学基金(70925004) (70925004)

太原理工大学学报

OA北大核心CSTPCD

1007-9432

访问量0
|
下载量0
段落导航相关论文