| 注册
首页|期刊导航|应用数学和力学|求解加权线性最小二乘问题的预处理迭代方法

求解加权线性最小二乘问题的预处理迭代方法

沈海龙 邵新慧 张铁

应用数学和力学2012,Vol.33Issue(3):357-365,9.
应用数学和力学2012,Vol.33Issue(3):357-365,9.DOI:10.3879/j.issn.1000-0887.2012.03.009

求解加权线性最小二乘问题的预处理迭代方法

Preconditioned Iterative Methods for Solving Weighted Linear Least Squares Problems

沈海龙 1邵新慧 2张铁1

作者信息

  • 1. 东北大学理学院,沈阳110004
  • 2. 东北大学信息科学与工程学院,沈阳110004
  • 折叠

摘要

Abstract

The preconditioned iterative methods for solving linear systems based on a class of weighted linear least square problems were proposed, which were the preconditioned generalized accelerated overrelaxation (GAOR) methods. Some convergence and comparison results were obtained. The comparison results show that the convergence rate of the preconditioned iterative methods is indeed better than the rate of the original methods, whenever the original methods are convergent. Furthermore, effectiveness of the new preconditioned methods is shown by numerical experiment.

关键词

预处理因子/GAOR方法/加权最小二乘问题/收敛

Key words

preconditioning/ GAOR method/ weighted linear least squares problems/ convergence/ comparison

分类

数理科学

引用本文复制引用

沈海龙,邵新慧,张铁..求解加权线性最小二乘问题的预处理迭代方法[J].应用数学和力学,2012,33(3):357-365,9.

基金项目

国家自然科学基金资助项目(11071033):中央高校基本业务费资助项目(090405013) (11071033)

应用数学和力学

OA北大核心CSCDCSTPCD

1000-0887

访问量0
|
下载量0
段落导航相关论文