| 注册
首页|期刊导航|北京生物医学工程|基于数学形态学与核主成分分析的峰电位检测与分类方法

基于数学形态学与核主成分分析的峰电位检测与分类方法

王冬雪 周逸峰

北京生物医学工程2012,Vol.31Issue(3):268-272,5.
北京生物医学工程2012,Vol.31Issue(3):268-272,5.DOI:10.3969/j.issn.1002-3208.2012.03.10

基于数学形态学与核主成分分析的峰电位检测与分类方法

Unsupervised spike detection and sorting with mathematical morphology and kernel principal components analysis

王冬雪 1周逸峰2

作者信息

  • 1. 中国科学技术大学电子科学技术系,合肥,200027
  • 2. 中国科学技术大学生命科学学院,合肥,200027
  • 折叠

摘要

Abstract

Objective We introduce a new unsupervised method for detecting and sorting spikes from extracellular recordings. Methods First, multiple mathematical morphology operation is used in signal de-noising before spike detection with a fixed threshold. Then,wavelet transform and kernel principal components analysis ( KPCA ) are performed to the detected spike waveforms to extract discriminative features. Finally, the minimum-distance clustering is proceeded to sort spikes. Results The simulation experimental results indicate that the spike detectable rate is 94% . The classification accuracy in general is over 91% and that with many superposed signals is over 88% . Conclusions The results show that the method performs quite well even with the noisy simulated spike data.

关键词

峰电位/检测/分类/数学形态学/核主成分分析

Key words

spike/ detection/ sorting/ mathematical morphology/ kernel principal components analysis

分类

医药卫生

引用本文复制引用

王冬雪,周逸峰..基于数学形态学与核主成分分析的峰电位检测与分类方法[J].北京生物医学工程,2012,31(3):268-272,5.

基金项目

中央高校基本科研业务费专项资金(WK2100230002)资助 (WK2100230002)

北京生物医学工程

OACSTPCD

1002-3208

访问量0
|
下载量0
段落导航相关论文