| 注册

P-内射的WB-环

李艳午 储茂叔 程海霞

成都大学学报:自然科学版2012,Vol.31Issue(1):39-42,4.
成都大学学报:自然科学版2012,Vol.31Issue(1):39-42,4.

P-内射的WB-环

Principal-injective WB-rings

李艳午 1储茂叔 2程海霞3

作者信息

  • 1. 芜湖信息技术职业学院,安徽芜湖241000
  • 2. 安徽师范大学数学与计算机科学学院,安徽芜湖241000
  • 3. 安徽师范大学数学与计算机科学学院,安徽芜湖241000/南京大学数学系,江苏南京210093
  • 折叠

摘要

Abstract

Necessary and sufficient conditions under which a principal injective ring's equivalence is a WB-ring. It is proved that if R is a nonsingular and principal ring, R just satisfies one of the following con- ditions: (a) R satisfies the ascending chain condition for special left annihilators; (b) R does not contain a direct sum of an infinite number of non-zero principal left ideals; (c) R is a CF-ring; (d) R is a Goldie ring, then the following conditions are equivalent: (1) R is a WB-ring; (2) For any a E R ,there exists or- thogonal ideals I and J such that a = aua = ava, where u ∈R is fight invertible module I and v E R is left invertible module I; (3) For any a E R, there exists orthogonal ideals I, J and e = e^2∈ R such that a = eu = ev,whereu∈R is right invertible module I and v∈R is left invertible module J;(4) If a=b, a, b ∈ R, then there exists orthogonal ideals I, J such that au = ub, av = vb, where u E R is right invert- ible module I and v E R is left invertible module J.

关键词

P-内射环/WB-环/正则环/正交理想/特殊左零化子升链条件

Key words

P-injective ring/WB-ring/regular ring/orthogonal ideal/the ascending chain condition for spe-cial left annihilators

分类

数理科学

引用本文复制引用

李艳午,储茂叔,程海霞..P-内射的WB-环[J].成都大学学报:自然科学版,2012,31(1):39-42,4.

基金项目

安徽省教育厅优秀青年人才基金 ()

安徽省教育厅自然科学重点项目(KJ2010A126)资助项目. ()

成都大学学报:自然科学版

1004-5422

访问量0
|
下载量0
段落导航相关论文