| 注册
首页|期刊导航|重庆理工大学学报:自然科学|基于改进神经网络的少齿差行星齿轮参数优化设计

基于改进神经网络的少齿差行星齿轮参数优化设计

吕俊峰 陈小安 赵孟娜

重庆理工大学学报:自然科学2012,Vol.26Issue(2):55-59,5.
重庆理工大学学报:自然科学2012,Vol.26Issue(2):55-59,5.

基于改进神经网络的少齿差行星齿轮参数优化设计

Optimal Design of Parameter for Few-tooth-difference Planetary Gear Transmission Based on Improved Neural Network

吕俊峰 1陈小安 1赵孟娜2

作者信息

  • 1. 重庆大学机械传动国家重点实验室,重庆400044
  • 2. 重庆理工大学重庆汽车学院,重庆400054
  • 折叠

摘要

Abstract

This paper, on the basis of analyzing few - tooth - difference planetary gear structure and according to its transmission characteristics and design requirements, builds a reliability mathematical model based on ambiguity reliability analysis through ambiguity reliability principle, which transforms the ambiguity design optimization model into the common optimization model. Through this model, the optimal parameters can be selected. And considering the deficiency of the traditional BP neural net- work, this paper designs a new type of improved neural network by combining stimulated annealing and BP neural network. The results showed that the absolute error and relative error through this algo-rithm are smaller. This is a comparatively accurate method for optimization design.

关键词

少齿差行星齿轮/BP神经函数/模拟退火/模糊可靠性

Key words

few-tooth-difference planetary gear/BP neural network/stimulated annealing/ambiguity reliability

分类

机械制造

引用本文复制引用

吕俊峰,陈小安,赵孟娜..基于改进神经网络的少齿差行星齿轮参数优化设计[J].重庆理工大学学报:自然科学,2012,26(2):55-59,5.

基金项目

基金项目:国家自然科学基金资助项目 ()

重庆理工大学学报:自然科学

OACSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文