重庆理工大学学报:自然科学2012,Vol.26Issue(2):112-117,6.
二维定常对流扩散方程的一种高精度紧致差分方法
High-Order Compact Difference Scheme for Solving Two-Dimensional Convection Diffusion Equation
摘要
Abstract
Based on the fourth-order Pade formula of the first and second-order derivatives, a fourth- order compact difference scheme is proposed for solving two-dimensional convection diffusion equa- tion. Fourth order explicit difference schemes are used to construct the same order discretization of boundary points. Then, the accuracy of the fourth-order compact difference schemes is upgraded to sixth-order by using Richardson extrapolation technique and operator interpolation scheme. Sixth-order explicit difference schemes of first and second-order derivatives on the boundaries are used. Finally, numerical experiments are given to prove the accuracy and efficiency of the present method.关键词
对流扩散方程/紧致格式/高精度/隐式差分/Richardson外推法/有限差分法Key words
convection diffusion equation/compact scheme/high order accuracy/implicit differ- ence/Richardson extrapolation/finite difference scheme分类
数理科学引用本文复制引用
魏剑英..二维定常对流扩散方程的一种高精度紧致差分方法[J].重庆理工大学学报:自然科学,2012,26(2):112-117,6.基金项目
基金项目:国家自然科学基金资助项目 ()
教育部科学技术研究重点项目 ()
霍英东教育基金会高等院校青年教师基金资助项目 ()