| 注册
首页|期刊导航|大地测量与地球动力学|基于Kullback-Leiber距离粗差探测的Bayes方法

基于Kullback-Leiber距离粗差探测的Bayes方法

王延停 归庆明 张倩倩

大地测量与地球动力学2012,Vol.32Issue(2):51-54,59,5.
大地测量与地球动力学2012,Vol.32Issue(2):51-54,59,5.

基于Kullback-Leiber距离粗差探测的Bayes方法

BAYESIAN APPROACH TO DETECTION OF GROSS ERRORS BASED ON DIVERGENCE OF KULLBACK-LEIBER

王延停 1归庆明 1张倩倩2

作者信息

  • 1. 解放军信息工程大学理学院,郑州450001
  • 2. 解放军信息工程大学测绘学院,郑州450052
  • 折叠

摘要

Abstract

With the view of influence analysis, a new Bayesian method for gross errors detection based on divergence of Kullback-Leiber is proposed. Under the condition of unequal weight and independent observations, a comparison among the data deletion model, the variance inflation model and the mean shift model based on certain prior distribution is made, and the computational formula of divergence of Kullback-Leiber about the three models is given and a judge rule of gross error detection is established. Finally, the method is used for gross error detection in triangulateration network and a good result is obtained.

关键词

Bayes方法/影响分析/Kullback-Leiber距离/粗差探测/方差膨胀模型

Key words

Bayesian method/ influence analysis/ Kullback-Leiber divergence/ gross errors detection/ variance in-flation model

分类

天文与地球科学

引用本文复制引用

王延停,归庆明,张倩倩..基于Kullback-Leiber距离粗差探测的Bayes方法[J].大地测量与地球动力学,2012,32(2):51-54,59,5.

基金项目

国家自然科学基金(40974009) (40974009)

郑州市科技计划攻关项目(0910SGYG21198) (0910SGYG21198)

大地测量与地球动力学

OA北大核心CSCDCSTPCD

1671-5942

访问量0
|
下载量0
段落导航相关论文