| 注册
首页|期刊导航|华东交通大学学报|基于压缩感知和字典学习的背景差分法

基于压缩感知和字典学习的背景差分法

郭厚焜 吴峰 黄萍

华东交通大学学报2012,Vol.29Issue(1):43-47,5.
华东交通大学学报2012,Vol.29Issue(1):43-47,5.

基于压缩感知和字典学习的背景差分法

Background Subtraction Based on Sparse Representation and Dictionary Learning

郭厚焜 1吴峰 1黄萍1

作者信息

  • 1. 华东交通大学信息工程学院,江西南昌,330013
  • 折叠

摘要

Abstract

In this paper, we propose a CS-based background subtraction approach based on the theory of sparse representation and dictionary learning, to handle sudden and gradual background changes and the redundancy of excessive image data and the interference of prospect. This method gets their data dictionary according to the video stream and establishes the background model based on the theory of dictionary learning and sparse representation to effectively reduce data redundancy. Then, the moving objects correctly depending on the intensity of the target and its neighbors are segmented so as to rule out interference of the foreground. Finally, the problem of sudden and gradual background changes is solved through the update algorithm of data dictionary. Experiments show that this method is feasible.

关键词

稀疏表示/字典学习/背景差分/前景分割

Key words

sparse representation/dictionary learning/background subtraction/foreground segmentation

分类

信息技术与安全科学

引用本文复制引用

郭厚焜,吴峰,黄萍..基于压缩感知和字典学习的背景差分法[J].华东交通大学学报,2012,29(1):43-47,5.

基金项目

江西省研究生创新专项基金项目(YC2011-X013) (YC2011-X013)

华东交通大学学报

OACSTPCD

1005-0523

访问量0
|
下载量0
段落导航相关论文