| 注册
首页|期刊导航|华中科技大学学报:自然科学版|基于SURE-LET和非张量积小波的遥感图像去噪

基于SURE-LET和非张量积小波的遥感图像去噪

曾武 徐正全 周龙

华中科技大学学报:自然科学版2012,Vol.40Issue(2):97-100,4.
华中科技大学学报:自然科学版2012,Vol.40Issue(2):97-100,4.

基于SURE-LET和非张量积小波的遥感图像去噪

SURE-LET and non-tensor wavelets based remote sensing image denoising

曾武 1徐正全 2周龙3

作者信息

  • 1. 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079/武汉工业学院电气信息工程系,湖北武汉430023
  • 2. 武汉大学测绘遥感信息工程国家重点实验室,湖北武汉430079
  • 3. 武汉工业学院电气信息工程系,湖北武汉430023
  • 折叠

摘要

Abstract

A novel method to address the Gaussian noise of remote sensing image using non-tensor wavelet and SURE-LET was presented, which mainly contained three parts, the non-tensor wavelet decomposition, coefficients shrinkage of each subbands using the threshold functions, and estimatingthe optimal combination weights of the processed subbands. The non-tensor wavelet filters could be represented in the parametric form, by using appropriate, the non-tensor wavelet coefficients of noise free remote sensing images and noise were separated better than the traditional tensor wavelet coeffi-cients. As a result, when using coefficient shrinkage technique to remove the noise, more noise free image coefficients could be reserved. Consequently, better denoising performance could be obtained. Experimental results show that by combining non-tensor wavelet and SURE-LET, the denoising pro- cedure is very fast and denoising performance in sense of PSNR is prior to tensor wavelet and SURE- LET.

关键词

遥感图像/高斯噪声/图像去噪/Stein无偏风险估计/非张量积小波

Key words

remote sensing image/Gaussian noise/image denoising/Stein unbiased risk estimation/non-tensor wavelet

分类

信息技术与安全科学

引用本文复制引用

曾武,徐正全,周龙..基于SURE-LET和非张量积小波的遥感图像去噪[J].华中科技大学学报:自然科学版,2012,40(2):97-100,4.

基金项目

国家自然科学基金资助项目(61075015). ()

华中科技大学学报:自然科学版

OA北大核心CSCDCSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文