| 注册
首页|期刊导航|计算机工程|基于非负矩阵分解和支持向量机的心电图分类

基于非负矩阵分解和支持向量机的心电图分类

赵传敏 马小虎

计算机工程2012,Vol.38Issue(9):174-176,3.
计算机工程2012,Vol.38Issue(9):174-176,3.DOI:10.3969/j.issn.1000-3428.2012.09.052

基于非负矩阵分解和支持向量机的心电图分类

ECG Classification Based on Nonnegative Matrix Factorization and Support Vector Machine

赵传敏 1马小虎1

作者信息

  • 1. 苏州大学计算机科学与技术学院,江苏苏州215006
  • 折叠

摘要

Abstract

In order to achieve better Electrocardiograph(ECG) characteristics from high-dimensional data and realize accurate automatic ECG classification, a novel method for ECG multi-classification is proposed. This method uses Nonnegative Matrix Factorization(NMF) for data dimension reduction and conducts multi-classification by Support Vector Machine(SVM). In implementing the conversion of high dimension to low dimension, NMF retains the original information and supplies better eigenvectors, so it improves the classification accuracy. By testing four kinds of ECG from the MIT-BIH arrhythmia database, the total accuracy is up to 99%.

关键词

非负矩阵分解/支持向量机/心电图/特征向量/降维

Key words

Nonnegative Matrix Factorization(NMF)/ Support Vector Machine(SVM)/ Electrocardiograph ECG)/ eigenvector/ dimension reduction

分类

信息技术与安全科学

引用本文复制引用

赵传敏,马小虎..基于非负矩阵分解和支持向量机的心电图分类[J].计算机工程,2012,38(9):174-176,3.

基金项目

苏州市科技计划基金资助项目(SG201005) (SG201005)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文