| 注册
首页|期刊导航|计算机工程|基于特征融合和流形增强的视频人脸识别

基于特征融合和流形增强的视频人脸识别

黄存东 刘仁金 杨思春

计算机工程2012,Vol.38Issue(9):193-196,4.
计算机工程2012,Vol.38Issue(9):193-196,4.DOI:10.3969/j.issn.1000-3428.2012.09.058

基于特征融合和流形增强的视频人脸识别

Video Face Recognition Based on Feature Fusion and Manifold Enhancement

黄存东 1刘仁金 2杨思春3

作者信息

  • 1. 安徽国防科技职业学院信息工程系,安徽六安237011
  • 2. 皖西学院信息工程学院,安徽六安237012
  • 3. 安徽工业大学计算机学院,安徽马鞍山243032
  • 折叠

摘要

Abstract

A new approach of face recognition in videos, named FFME, is proposed. Faces are divided into different regions. Different local feature descriptors, which are selected against the variation of some region, are combined for face representation. K-NN model is built for feature vectors classification. A sum rule is followed by FFME to combine the individual classification results. Manifold is introduced for constructing a set of reference face images to re-rank the top candidate images, which is approved later to enhance the face recognition rates. Experimental results on the video-based face database Mobo and Honda/UCSD show that FFME is superior to other methods such as principal components analysis, linear discriminant analysis, hidden Markov model, locally linear embedding and manifold-manifold distance.

关键词

特征融合/流形/视频人脸识别/局部特征/全局特征

Key words

feature fusion/ manifold/ video face recognition/ local feature/ global feature

分类

信息技术与安全科学

引用本文复制引用

黄存东,刘仁金,杨思春..基于特征融合和流形增强的视频人脸识别[J].计算机工程,2012,38(9):193-196,4.

基金项目

安徽省高校教学研究基金资助重点项目(20101689) (20101689)

安徽省自然科学基金资助项目(11040606M150) (11040606M150)

安徽省高校自然科学研究基金资助重点项目(KJ2009A054,KJ2011A048) (KJ2009A054,KJ2011A048)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文