| 注册
首页|期刊导航|计算机工程|基于人工蜂群优化的二维最大熵图像分割

基于人工蜂群优化的二维最大熵图像分割

阿里木·赛买提 杜培军 柳思聪

计算机工程2012,Vol.38Issue(9):223-225,243,4.
计算机工程2012,Vol.38Issue(9):223-225,243,4.DOI:10.3969/j.issn.1000-3428.2012.09.068

基于人工蜂群优化的二维最大熵图像分割

Maximum 2D Entropy Image Segmentation Based on Artificial Bee Colony Optimization

阿里木·赛买提 1杜培军 1柳思聪2

作者信息

  • 1. 中国矿业大学江苏省资源环境信息工程重点实验室,江苏徐州221116
  • 2. 南京大学卫星测绘技术与应用国家测绘地理信息局重点实验室,南京210093
  • 折叠

摘要

Abstract

Aiming at the problem of large computing in maximum 2D entropy based image segmentation method, this paper proposes a maximum 2D entropy image segmentation algorithm based on artificial bee colony optimization. Artificial bee colony algorithm has certain advantage in convergence speed, prevents local optimization, and has few control parameters. Using these advantages, the best 2D threshold of maximum 2D entropy method is considered as nectar, and artificial bee colony optimized maximum 2D entropy method is used to segment images. Experimental result shows that, compared with other methods, constriction of this method is quicker, stability is better and resistance to the noise is stronger.

关键词

图像分割/二维最大熵/人工蜂群/粒子群优化/遗传算法/人工鱼群/遗传模拟退火算法

Key words

image segmentation/ maximum 2D entropy/ artificial bee colony/ Partial Swarm Optimization(PSO)/ genetic algorithm/ artificial fish swarm/ genetic simulated annealing algorithm

分类

信息技术与安全科学

引用本文复制引用

阿里木·赛买提,杜培军,柳思聪..基于人工蜂群优化的二维最大熵图像分割[J].计算机工程,2012,38(9):223-225,243,4.

基金项目

国家自然科学基金资助项目(40871195) (40871195)

江苏省自然科学基金资助项目(BK2010182) (BK2010182)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文