| 注册
首页|期刊导航|计算机工程与科学|基于免疫克隆文化算法的关联规则挖掘

基于免疫克隆文化算法的关联规则挖掘

杨光军

计算机工程与科学2012,Vol.34Issue(3):118-121,4.
计算机工程与科学2012,Vol.34Issue(3):118-121,4.DOI:10.3969/j.issn.1007-130X.2012.03.022

基于免疫克隆文化算法的关联规则挖掘

Mining Association Rules Based on Immune Clone Culture Algorithm

杨光军1

作者信息

  • 1. 德州学院机电工程系,山东德州253023
  • 折叠

摘要

Abstract

Association rules mining is an important problem in data mining. The traditional mining algorithms have high complexity and low efficiency, while the intelligent algorithms have the advantages of maintenance of population diversity and robustness in the searching process. A model of mining association rules based on immune clone culture algorithm is proposed. This model takes advantages of global searching in the immune clone algorithm to rapidly search the frequent item sets and then extract the interesting rules. It also uses the knowledge structure of belief space in the culture algorithm to guide the population's evolution and enhance the purpose and directivity of searching. The experiments show that the new model has faster performance speed and also improves the accuracy of the rules.

关键词

关联规则/免疫克隆算法/文化算法

Key words

association rules/immune clone algorithm/culture algorithm

分类

信息技术与安全科学

引用本文复制引用

杨光军..基于免疫克隆文化算法的关联规则挖掘[J].计算机工程与科学,2012,34(3):118-121,4.

计算机工程与科学

OA北大核心CSCDCSTPCD

1007-130X

访问量0
|
下载量0
段落导航相关论文