| 注册
首页|期刊导航|计算机工程与应用|PCA与ICA相结合的语音信号盲分离

PCA与ICA相结合的语音信号盲分离

王玉静 于凤芹

计算机工程与应用2012,Vol.48Issue(10):124-127,4.
计算机工程与应用2012,Vol.48Issue(10):124-127,4.DOI:10.3778/j.issn.1002-8331.2012.10.027

PCA与ICA相结合的语音信号盲分离

Blind separation for speech signal based on PCA and ICA

王玉静 1于凤芹1

作者信息

  • 1. 江南大学物联网工程学院,江苏无锡214122
  • 折叠

摘要

Abstract

In order to solve the slow convergence problem of ICAbased algorithm and high computational cost due to excessive amount data, an blind separation algorithm based on PCA-ICA for speech signal is proposed. PCA is used to remove the second-ordfir correlations among different dimensions of feature from original data. Using similarity coefficient matrix as the separation effect standard, the simulation experiment results show that the proposed method can reduce 90% of iterations and is 3 times faster compared with ICA with the same separation accuracy. Thus the ICA-PCA algorithm effectively solves the slow convergence problem of original ICA method.

关键词

盲源分离/独立分量分析/主成分分析

Key words

blind source separation/ independent component analysis/ principle component analysis

分类

信息技术与安全科学

引用本文复制引用

王玉静,于凤芹..PCA与ICA相结合的语音信号盲分离[J].计算机工程与应用,2012,48(10):124-127,4.

基金项目

国家自然科学基金(No.61075008). (No.61075008)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文