| 注册
首页|期刊导航|计算机工程与应用|基于快速二维熵的加权模糊C均值聚类图像分割

基于快速二维熵的加权模糊C均值聚类图像分割

沙秀艳 王贞俭

计算机工程与应用2012,Vol.48Issue(10):183-186,4.
计算机工程与应用2012,Vol.48Issue(10):183-186,4.DOI:10.3778/j.issn.1002-8331.2012.10.041

基于快速二维熵的加权模糊C均值聚类图像分割

Fast image segmentation of weighted fuzzy C-means clustering based on 2-D entropy

沙秀艳 1王贞俭2

作者信息

  • 1. 鲁东大学数学与信息学院,山东烟台264025
  • 2. 鲁东大学图书馆情报技术部,山东烟台264025
  • 折叠

摘要

Abstract

In this paper, an image segmentation algorithm for combining fast two-dimensional entropy and weighted fuzzy C-means(FCM) clustering is proposed. The centers of the object and the background are obtained by applying fast two-dimensions entropy algorithm. Then, the influence of every sample on the classification is characterized by the gray difference between the sample and its neighborhood samples. At last, the segmentation is obtained by weighted fuzzy C-means clustering algorithm. The new algorithm can solve the question that the traditional FCM clustering algorithm is sensitive to the initial value. Moreover, it can overcome the shortage that the traditional clustering algorithm is equally partition to the sample set. The experimental result shows that the algorithm not only has good convergence, but also can effectively segment the target from its background. The new algorithm has the important practical application value.

关键词

模糊C均值聚类/二维熵/图像分割

Key words

fuzzy C-means clustering/ two-dimensional entropy/ image segmentation

分类

信息技术与安全科学

引用本文复制引用

沙秀艳,王贞俭..基于快速二维熵的加权模糊C均值聚类图像分割[J].计算机工程与应用,2012,48(10):183-186,4.

基金项目

国家自然科学基金(No.11001117) (No.11001117)

山东省高等学校科技计划项目(No.J10LA09) (No.J10LA09)

鲁东大学校基金(No.L20072703,No.L20082703). (No.L20072703,No.L20082703)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文