| 注册
首页|期刊导航|计算机工程与应用|EMD和遗传神经网络算法研究—以装载机动态称重系统为例

EMD和遗传神经网络算法研究—以装载机动态称重系统为例

刘勤贤 吕炜 鲍卫兵

计算机工程与应用2012,Vol.48Issue(11):229-232,4.
计算机工程与应用2012,Vol.48Issue(11):229-232,4.DOI:10.3778/j.issn.1002-8331.2012.11.049

EMD和遗传神经网络算法研究—以装载机动态称重系统为例

EMD method and genetic neural network algorithm and its application to dynamic weighing system for loader

刘勤贤 1吕炜 2鲍卫兵1

作者信息

  • 1. 浙江工业大学之江学院,杭州310024
  • 2. 杭州萧山国际机场,杭州311207
  • 折叠

摘要

Abstract

The output signal of pressure sensor installed in the dynamic weighing system for loader contains strong vibration, noise, nonlinear signal. The accuracy of the dynamic weighing system is closely related to the pressure signal. An Empirical Mode Decomposition (EMD) algorithm is proposed to preprocess the signal contaminated. The real weighing signal is filtered out. BP neural network is used to fit the nonlinear relationship between the weighing signal and the weights of the goods. The genetic algorithm is put forward to speed up the convergence. The suitable mathematical model of nonlinear measure weight is obtained. The emulation analysis and the results show that by using the above method, measure precision is efficacious.

关键词

装载机/动态称重系统/经验模态分解/遗传神经网络

Key words

loader/ dynamic weighing system/ Empirical Mode Decomposition (EMD)/ genetic neural network

分类

信息技术与安全科学

引用本文复制引用

刘勤贤,吕炜,鲍卫兵..EMD和遗传神经网络算法研究—以装载机动态称重系统为例[J].计算机工程与应用,2012,48(11):229-232,4.

基金项目

浙江省自然科学基金(No.Y1100237). (No.Y1100237)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文