| 注册
首页|期刊导航|计算机工程与应用|一种静态特征与动态特征结合的方言辨识方法

一种静态特征与动态特征结合的方言辨识方法

何艳 于凤芹

计算机工程与应用2012,Vol.48Issue(13):105-108,4.
计算机工程与应用2012,Vol.48Issue(13):105-108,4.DOI:10.3778/j.issn.1002-8331.2012.13.023

一种静态特征与动态特征结合的方言辨识方法

Dialect identification method based on static and dynamic features

何艳 1于凤芹1

作者信息

  • 1. 江南大学物联网工程学院,江苏无锡214122
  • 折叠

摘要

Abstract

MFCC(Mel Frequence Cepstral Coefficients) only reflects speech static feature so its dialect recognition rate is low, while SDC( Shifted Delta Cepstra) reflects speech dynamic feature because of considering the connections between several speech frames. For combination of static and dynamic features, MFCC and SDC extracted from Mandarin, Shanghai dialect, Cantonese, Minnan dialect are employed as the feature vector with SVM( Support Vector Machine) for the dialect identification, and effects on performance of different parameters for SDC are studied. Simulation results demonstrate that the dialect recognition rate with static and dynamic features can be up to 92.5%, but its increase is based on the cost of the working time.

关键词

方言辨识/Mel频率倒谱系数/滑动差分倒谱特征/支持向量机

Key words

dialect identification/ Mel Frequence Cepstral Coefficients (MFCC)/ Shifted Delta Cepstra (SDC)/ Support Vector Machine (SVM)

分类

信息技术与安全科学

引用本文复制引用

何艳,于凤芹..一种静态特征与动态特征结合的方言辨识方法[J].计算机工程与应用,2012,48(13):105-108,4.

基金项目

国家自然科学基金(No.61075008). (No.61075008)

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文