计算机工程与应用2012,Vol.48Issue(17):58-62,5.DOI:10.3778/j.issn.1002-8331.2012.17.012
一类比率依赖的Holling-Leslie捕食-食饵模型的全局分歧
Global bifurcation of a class of ratio-dependent Holling-Leslie type predatorprey model
摘要
Abstract
Based on the methods of the bifurcation theory and the Leray-Schauder degree theory, a class of ratio-dependent Holling-Leslie type predator model, subject to homogeneous Neumann boundary condition, is investigated. The bifurcation from positive constant equilibrium is obtained by treating the diffusion coefficient of predator as bifurcation parameter. Through the use of local and global bifurcation theories, sufficient conditions for the existence of non-constant positive solution are derived. The fact that the global bifurcation joins up with infinity in the case of one-dimension is obtained.关键词
比率依赖/Holling-Leslie/分歧理论/Leray-Schauder度理论Key words
ratio-dependent/ Holling-Leslie/ bifurcation theory/ Leray-Schauder degree theory分类
数理科学引用本文复制引用
杨文彬,李艳玲..一类比率依赖的Holling-Leslie捕食-食饵模型的全局分歧[J].计算机工程与应用,2012,48(17):58-62,5.基金项目
国家自然科学基金(No.10971124) (No.10971124)
高等学校博士学科点专项科研基金(No.200807180004). (No.200807180004)