| 注册
首页|期刊导航|计算机科学与探索|基于改进图半监督学习的个人信用评估方法

基于改进图半监督学习的个人信用评估方法

张燕 张晨光 张夏欢

计算机科学与探索Issue(5):473-480,8.
计算机科学与探索Issue(5):473-480,8.DOI:10.3778/j.issn.1673-9418.2012.05.009

基于改进图半监督学习的个人信用评估方法

Personal Credit Scoring Method Using Improved Graph Based Semi-Supervised Learning

张燕 1张晨光 1张夏欢2

作者信息

  • 1. 海南大学信息科学技术学院,海口570228
  • 2. 北京工业大学计算机学院,北京100124
  • 折叠

摘要

Abstract

Labeled instances are expensive to collect for personal credit scoring. However, unlabeled data are often relatively easy to obtain. Aiming at this problem and the ubiquitous asymmetry of credit datasets, this paper proposes a personal credit scoring model based on improved graph based semi-supervised learning method. Because the model adopts semi-supervised technology, it can learn from abundant unlabeled instances to avoid the decreasing of generalization ability which is induced by the relative lack of labeled data. Furthermore, by improving graph based semi-supervised learning technology with normalization and modification of decision boundary on its iterative results, the scoring model effectively reduces the bad impact of asymmetric dataset. Experiments on three UCI credit approval datasets show that the new scoring model can provide significantly better results than support vector machines and the unimproved method.

关键词

信用评估/支持向量机/图半监督学习/不对称数据集

Key words

credit scoring/ support vector machine/ graph based semi-supervised learning/ asymmetric dataset

分类

信息技术与安全科学

引用本文复制引用

张燕,张晨光,张夏欢..基于改进图半监督学习的个人信用评估方法[J].计算机科学与探索,2012,(5):473-480,8.

基金项目

The College Scientific Research Program of Education Department of Hainan Province under Grant No.Hjkj2012-01(海南省教育厅高等学校科学研究项目). (海南省教育厅高等学校科学研究项目)

计算机科学与探索

OACSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文