| 注册
首页|期刊导航|计算机与数字工程|基于模糊C均值算法的入侵检测方法

基于模糊C均值算法的入侵检测方法

林荣亮 张文波

计算机与数字工程2012,Vol.40Issue(5):82-83,148,3.
计算机与数字工程2012,Vol.40Issue(5):82-83,148,3.

基于模糊C均值算法的入侵检测方法

An Approach for Intrusion Detection Based on Fuzzy C-means Algorithm

林荣亮 1张文波1

作者信息

  • 1. 中国人民解放军92854部队 湛江524005
  • 折叠

摘要

Abstract

Clustering analysis is an effective method of anomaly intrusion detection,which can find normal flow and abnormal flow in the network data set. Fuzzy C-means clustering algorithm is applied to classify the network traffic data into normal flow and abnormal flow. A new clustering center method which is designed for intrusion detecting problem specially is provided in this paper. Finally. KDD 99 data set is used for the illustrative example , and the result proves that this algorithm could discover the abnormal flows effectively.

关键词

模糊聚类/入侵检测/距离测度/模糊C均值

Key words

fuzzy clustering/ intrusion detection/ distance measurement/ fuzzy C-means algorithm

分类

信息技术与安全科学

引用本文复制引用

林荣亮,张文波..基于模糊C均值算法的入侵检测方法[J].计算机与数字工程,2012,40(5):82-83,148,3.

计算机与数字工程

1672-9722

访问量0
|
下载量0
段落导航相关论文