| 注册
首页|期刊导航|计算机应用与软件|基于主动学习SMOTE的非均衡数据分类

基于主动学习SMOTE的非均衡数据分类

张永 李卓然 刘小丹

计算机应用与软件2012,Vol.29Issue(3):91-93,162,4.
计算机应用与软件2012,Vol.29Issue(3):91-93,162,4.

基于主动学习SMOTE的非均衡数据分类

ACTIVE LEARNING SMOTE BASED IMBALANCED DATA CLASSIFICATION

张永 1李卓然 1刘小丹1

作者信息

  • 1. 辽宁师范大学计算机与信息技术学院,辽宁大连116081
  • 折叠

摘要

Abstract

Synthetic Minority Over-sampling Technique ( SMOTE) is a typical over-sampling data preprocessing method which can effectively balance the imbalanced data. However, it brings about noise as well as other problems, so that the classification accuracy is downgraded. To solve the problem, with the help of the classification performance of active learning SVM, an imbalance data classification approach, called ALSMOTE, which is based on active learning SMOTE, is proposed. Since active learning SVM relies on distance-based active selection optimal samples learning strategies, it can actively choose from imbalanced data the valuable majority class samples by discarding valueless samples, so as to enhance operational efficiency and mitigate the problems brought about by SMOTE. First of all SMPTE approach is used to balance a small part of samples to obtain an initial classification; then active learning strategies are followed to adjust the classification accuracy. Experimental results show that the proposed method can effectively improve the imbalanced data' s classification accuracy.

关键词

主动学习/不平衡数据集/少数类样本合成过采样技术/支持向量机

Key words

Active learning/Imbalanced data set/SMOTE/SVM

分类

信息技术与安全科学

引用本文复制引用

张永,李卓然,刘小丹..基于主动学习SMOTE的非均衡数据分类[J].计算机应用与软件,2012,29(3):91-93,162,4.

基金项目

国家自然科学基金项目(10771092) (10771092)

辽宁省科技厅博士启动基金项目(20081079) (20081079)

大连市科学技术基金项目(2010J21DW019). (2010J21DW019)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文