| 注册
首页|期刊导航|计算机应用与软件|核空间结合样本中心角度的支持向量机增量算法

核空间结合样本中心角度的支持向量机增量算法

夏书银 王越 张权

计算机应用与软件2012,Vol.29Issue(4):121-124,4.
计算机应用与软件2012,Vol.29Issue(4):121-124,4.

核空间结合样本中心角度的支持向量机增量算法

INCREMENTAL SVM ALGORITHM BASED ON COMBINATION OF KERNEL SPACE AND SAMPLE CENTRE ANGLE

夏书银 1王越 1张权2

作者信息

  • 1. 重庆理工大学计算机科学与工程学院 重庆400054
  • 2. 西南交通大学交通运输与物流学院 四川成都610031
  • 折叠

摘要

Abstract

To improve the training accuracy of incremental algorithm,in kernel-induced feature spaces,we firstly get two kind of centres in original training set and the ultra-normal plane of two centres,then obtain the ratios of the distances between original training set and the ultra-normal plane and between that and the midpoint of two centres, and finally generate the new training set by combining n sample points with smallest ratios with the support vectors in original training set and the samples in incremental set which contravenes KKT conditions. The presented mathematical model in end of the paper shows that the algorithm does not need to calculate the kernel-induced feature spaces, it retains more numbers of support vector than existing incremental support vector machine algorithms and ensures the training accuracy.

关键词

支持向量机/KKT/增量算法/核空间/超平面/样本中心

Key words

SVM/KKT/Incremental algorithm/Kernel space/Hyperplane/Sample centre

分类

信息技术与安全科学

引用本文复制引用

夏书银,王越,张权..核空间结合样本中心角度的支持向量机增量算法[J].计算机应用与软件,2012,29(4):121-124,4.

基金项目

重庆市科委攻关项目(CSTC,2009AC208). (CSTC,2009AC208)

计算机应用与软件

OA北大核心CSCDCSTPCD

1000-386X

访问量1
|
下载量0
段落导航相关论文