| 注册
首页|期刊导航|江西科学|Helmholtz方程边值问题奇异解的间断有限元数值方法

Helmholtz方程边值问题奇异解的间断有限元数值方法

赵海峰

江西科学2012,Vol.30Issue(2):121-124,139,5.
江西科学2012,Vol.30Issue(2):121-124,139,5.

Helmholtz方程边值问题奇异解的间断有限元数值方法

Discontinuous Galerkin Method for Helmholtz Boundary Value Problems with Singularities

赵海峰1

作者信息

  • 1. 东南大学数学系,江苏南京210096
  • 折叠

摘要

Abstract

Consider the numerical method to solve Helmholtz equation with singular boundary value.The singularity comes from the boundary reentry corner or mixed boundary value problem on the boundary of the critical point.For the two cases problems,we introduce an artificial boundary condition in the vicinity of the singular point and give an exactly DtN boundary condition using the local homogeneous boundary conditions.Thus we solve these problems in the domain without singular point.We use discontinuous Galerkin method to solve the boundary value problem.The advantages of DG are allowing the mesh has hanging nodes and adaptive computing.The numerical results show that our algorithm is effective in solving the problem in the approximate domain.

关键词

奇异解/人工边界条件/间断有限元

Key words

Singular solution/Artificial boundary condition/Discontinuous Galerkin method

分类

数理科学

引用本文复制引用

赵海峰..Helmholtz方程边值问题奇异解的间断有限元数值方法[J].江西科学,2012,30(2):121-124,139,5.

基金项目

致谢:感谢导师刘继军教授在本文完成中的讨论和提出的有效建议. ()

江西科学

1001-3679

访问量0
|
下载量0
段落导航相关论文