控制理论与应用2012,Vol.29Issue(2):229-234,6.
多切面分类改进独立成份与支持向量机集成故障诊断方法
Multisection classification improving integrated fault diagnosis method based on independent component analysis and supportvectormachines
摘要
Abstract
The integrated diagnosis method of independent component analysis (ICA) and supportvectormachines (SVM) is improved by multisection classification. Fault classification model of SVM is designed for each section in the high dimensional characteristic space. By diagnosing the fault type in different section, we improve the ICASVM fault diagnosis performance. This method has been applied to diagnose 19 types of valve failures on the dynamic actuator refer ence platform (DAMADICS). Simulation results show that the ICAMSVM fault diagnosis method based on multisection classification effectively improves the accuracy of fault diagnosis.关键词
多切面分类/独立成分分析/支持向量机/故障辨识/执行器基准平台Key words
multisession classification/independent component analysis (ICA)/supportvectormachine (SVM)/faultdiagnosis/actuator reference platform (DAMADICS)分类
信息技术与安全科学引用本文复制引用
薄翠梅,柏杨进,杨海荣,张广明..多切面分类改进独立成份与支持向量机集成故障诊断方法[J].控制理论与应用,2012,29(2):229-234,6.基金项目
国家自然科学基金资助项目 ()
江苏省自然科学基金资助项目 ()
中国博士后科学基金资助项目 ()
江苏省博士后科学基金资助项目(0901011B). ()