河南科技大学学报(自然科学版)2012,Vol.33Issue(2):70-74,5.
Kdv浅水波方程的Crank-Nicolson差分格式
摘要
Abstract
The numerical solution of nonlinear evolution equations is important. Among the nonlinear evolution equations, Kdv shallow water wave equation is the most typical representative of nonlinear dispersive wave equation. In this paper, Crank-Nicolson finite difference method having good stability and second order convergence was used for solving Kdv shallow water wave equation fixed-solutions. The physical phenomenon of solitary waves can be simulated numerically. So the difference method is effective.关键词
Kdv方程/Crank-Nicolson差分格式/截断误差/稳定性/收敛性Key words
Kdv equations/Crank-Nicolson difference scheme/Truncation errors/Stability/Convergence分类
数理科学引用本文复制引用
郭瑞,王周峰,王振华..Kdv浅水波方程的Crank-Nicolson差分格式[J].河南科技大学学报(自然科学版),2012,33(2):70-74,5.基金项目
国家自然科学基金项目(50809039) (50809039)
河南省教育厅自然科学基金项目(2011B110014) (2011B110014)