| 注册
首页|期刊导航|南方电网技术|结合支持向量机和马尔可夫链算法的中长期电力负荷预测模型

结合支持向量机和马尔可夫链算法的中长期电力负荷预测模型

陈剑勇 苏浩益

南方电网技术2012,Vol.6Issue(1):54-58,5.
南方电网技术2012,Vol.6Issue(1):54-58,5.

结合支持向量机和马尔可夫链算法的中长期电力负荷预测模型

A Forecasting Model of Medium/Long Term Power Load in Combination of the Support Vector Machine and Markov Chain Algorithms

陈剑勇 1苏浩益2

作者信息

  • 1. 南宁供电局,南宁530031
  • 2. 湘潭电业局,湖南湘潭411104
  • 折叠

摘要

Abstract

In processing medium and long term power load forecasting,with less available historical data,and many uncertainties factors are influencing the results,thus the traditional single forecast model is difficult to meet actual production needs.On the basis of brief analysis of the advantages of Support Vector Machines and Markov Chain model,a new combination prediction model is put forward based on Support Vector Machines and Markov Chain theory.Support Vector Machines optimized by improved particle swarm algorithm was used to forecast the sequence of historical load;The state divert probability matrix of the load time series is gotten by Markov chain;The final results is determined by division of system state and analysis of relative error value between actual values and support vector machines predict values.Practical example reveals the validity and advantage of the proposed model.

关键词

支持向量机/马尔可夫链/负荷预测/粒子群优化/组合模型

Key words

support vector machines/Markov chain/load forecasting/particle swarm optimization/combination model

分类

信息技术与安全科学

引用本文复制引用

陈剑勇,苏浩益..结合支持向量机和马尔可夫链算法的中长期电力负荷预测模型[J].南方电网技术,2012,6(1):54-58,5.

南方电网技术

OACSTPCD

1674-0629

访问量0
|
下载量0
段落导航相关论文