| 注册
首页|期刊导航|南京邮电大学学报(自然科学版)|基于小波分解的语音自适应压缩感知

基于小波分解的语音自适应压缩感知

唐力

南京邮电大学学报(自然科学版)2012,Vol.32Issue(2):64-68,5.
南京邮电大学学报(自然科学版)2012,Vol.32Issue(2):64-68,5.

基于小波分解的语音自适应压缩感知

Adaptive Speech Compressed Sensing Based on Wavelet Transform

唐力1

作者信息

  • 1. 南京邮电大学宽带无线通信与传感网技术教育部重点实验室,江苏南京210003
  • 折叠

摘要

Abstract

Based on the characteristics coefficients of speech signal at low frequency and high frequency after wavelet transformation, this paper proposes adaptive speech compressed sensing. First, the trained overcomplete dictionary is applied to the low frequency coefficients after wavelet transformation to decrease the computation of the sparse decomposition. Second, an improved adaptive sensing matrix is proposed, which is applied to the low frequency and high frequency wavelet transformation respectively. At last, OMP reconstruct algorithm is employed to reconstruct the wavelet transformation coefficients, and then the signal can be finally recovered through Wavelet synthesis. Simulation results demonstrate that, based on wavelet transform,the approach using the adaptive speech compressed sensing has a good performance in reconstruction.

关键词

压缩感知/小波分解/K-SVD/稀疏性

Key words

compressed sensing/wavelet transform/K-SVD/sparsity

分类

信息技术与安全科学

引用本文复制引用

唐力..基于小波分解的语音自适应压缩感知[J].南京邮电大学学报(自然科学版),2012,32(2):64-68,5.

基金项目

国家重点基础研究发展计划(973计划)(2011 CB302903)和国家自然科学基金(60971129)资助项目 (973计划)

南京邮电大学学报(自然科学版)

OA北大核心CSTPCD

1673-5439

访问量0
|
下载量0
段落导航相关论文