| 注册
首页|期刊导航|同济大学学报(自然科学版)|Finsler流形上取值于向量丛的调和形式

Finsler流形上取值于向量丛的调和形式

贺群 吴方方

同济大学学报(自然科学版)2012,Vol.40Issue(3):491-494,4.
同济大学学报(自然科学版)2012,Vol.40Issue(3):491-494,4.DOI:10.3969/j.issn.0253-374x.2012.03.027

Finsler流形上取值于向量丛的调和形式

Harmonic Forms with Values in Vector Bundle over Finsler Manifolds

贺群 1吴方方1

作者信息

  • 1. 同济大学应用数学系,上海200092
  • 折叠

摘要

Abstract

By defining the global inner product of p-forms with values in the vector bundle over a Finsler manifold and the integral on fibers of a protective sphere bundle, the corresponding codifferential operator is obtained. Then we define the Laplace operator of p-forms valued in the vector bundle over a Finsler manifold and prove that it is elliptic and self-conjugate. Particularly, when the target manifold is Rie mannian. The equivalence between a harmonic map and a harmonic 1-form with values in the pull back tangent bundle is derived.

关键词

调和映射/余微分算子/Laplace算子/取值于向量丛的调和形式

Key words

harmonic maps/codifferential operator/Laplace operator/harmonic forms with values in the vector bundle

分类

数理科学

引用本文复制引用

贺群,吴方方..Finsler流形上取值于向量丛的调和形式[J].同济大学学报(自然科学版),2012,40(3):491-494,4.

基金项目

国家自然科学基金(10971239) (10971239)

上海市自然科学基金(09ZR1433000) (09ZR1433000)

同济大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0253-374X

访问量0
|
下载量0
段落导航相关论文