同济大学学报(自然科学版)2012,Vol.40Issue(3):491-494,4.DOI:10.3969/j.issn.0253-374x.2012.03.027
Finsler流形上取值于向量丛的调和形式
Harmonic Forms with Values in Vector Bundle over Finsler Manifolds
摘要
Abstract
By defining the global inner product of p-forms with values in the vector bundle over a Finsler manifold and the integral on fibers of a protective sphere bundle, the corresponding codifferential operator is obtained. Then we define the Laplace operator of p-forms valued in the vector bundle over a Finsler manifold and prove that it is elliptic and self-conjugate. Particularly, when the target manifold is Rie mannian. The equivalence between a harmonic map and a harmonic 1-form with values in the pull back tangent bundle is derived.关键词
调和映射/余微分算子/Laplace算子/取值于向量丛的调和形式Key words
harmonic maps/codifferential operator/Laplace operator/harmonic forms with values in the vector bundle分类
数理科学引用本文复制引用
贺群,吴方方..Finsler流形上取值于向量丛的调和形式[J].同济大学学报(自然科学版),2012,40(3):491-494,4.基金项目
国家自然科学基金(10971239) (10971239)
上海市自然科学基金(09ZR1433000) (09ZR1433000)