| 注册
首页|期刊导航|计算机技术与发展|融合灰色关联和主成分分析的磨粒自动识别

融合灰色关联和主成分分析的磨粒自动识别

王国忠 王静秋 于海武

计算机技术与发展2012,Vol.22Issue(4):16-20,5.
计算机技术与发展2012,Vol.22Issue(4):16-20,5.

融合灰色关联和主成分分析的磨粒自动识别

Wear Particles Identification Based on Cooperation of Grey Relational Analysis and Principal Component Analysis

王国忠 1王静秋 1于海武1

作者信息

  • 1. 南京航空航天大学机电学院,江苏南京210016
  • 折叠

摘要

Abstract

According to abrasive wear of the mechanical failure, abrasive recognition technology can be used to effectively improve the e-quipment fault diagnosis and monitoring of standards and reduce the occurrence of mechanical failure. Identification of specific analysis methods has been proposed oxide abrasive,abrasive severe sliding, fatigue, abrasive. Principal component analysis combined with the Euclidean distance identification oxide abrasive. Grey relational analysis and principal component analysis combined analysis identified fatigue and severe sliding abrasive. Finally, verified the accuracy and feasibility of the method by example, abrasive identification speed and efficiency is improved.

关键词

磨粒识别/主成分分析,灰色关联度/欧氏距离

Key words

wear particles identification/principal component analysis/grey relation degree/Euclidean distance

分类

信息技术与安全科学

引用本文复制引用

王国忠,王静秋,于海武..融合灰色关联和主成分分析的磨粒自动识别[J].计算机技术与发展,2012,22(4):16-20,5.

基金项目

南京航空航天大学基本科研业务费专项科研项目(NS2010136) (NS2010136)

计算机技术与发展

OACSTPCD

1673-629X

访问量0
|
下载量0
段落导航相关论文