| 注册
首页|期刊导航|物理学报|基于小波回声状态网络的混沌时间序列预测

基于小波回声状态网络的混沌时间序列预测

宋彤 李菡

物理学报2012,Vol.61Issue(8):90-96,7.
物理学报2012,Vol.61Issue(8):90-96,7.

基于小波回声状态网络的混沌时间序列预测

Chaotic time series prediction based on wavelet echo state network

宋彤 1李菡1

作者信息

  • 1. 大连理工大学电子信息与电气工程学部,大连116023
  • 折叠

摘要

Abstract

Chaos is widespread in nature and human society, so the prediction of chaotic time series is very important. In this paper, we propose a new chaotic time series prediction model - echo state network based on wavelet, which can effectively overcome the ill-posed problem that exists in traditional echo state networks. And it also has a good generalization ability. Three time series are used to test the new model, i.e., Lorenz time series, Lorenz time series with added noise and batch reactor vessel temperature time series. Results suggest that the new proposed method can achieve a higher predictable accuracy, better generalization and more stable prediction results than traditional echo state networks.

关键词

小波分解/回声状态网络/小波回声状态网络/混沌时间序列预测

Key words

wavelet decomposition/echo state networks/echo state networks based on wavelet/chaotic time seriesprediction

分类

数理科学

引用本文复制引用

宋彤,李菡..基于小波回声状态网络的混沌时间序列预测[J].物理学报,2012,61(8):90-96,7.

物理学报

OA北大核心CSCDCSTPCDSCI

1000-3290

访问量7
|
下载量0
段落导航相关论文