| 注册
首页|期刊导航|现代防御技术|基于主成分分析和神经网络的目标识别

基于主成分分析和神经网络的目标识别

陈新来

现代防御技术2012,Vol.40Issue(2):132-137,6.
现代防御技术2012,Vol.40Issue(2):132-137,6.DOI:10.3969/j.issn.1009-086x.2012.02.026

基于主成分分析和神经网络的目标识别

Target Recognition Based on Principal Component Analysis and Neural Networks

陈新来1

作者信息

  • 1. 海军蚌埠士官学校,安徽蚌埠233012
  • 折叠

摘要

Abstract

The principal component analysis (PCA) is used to aggregate the recognition attribute in order to decrease the association of each attribute and reduce the attribute. The neural networks is used to recognize the target. The use of optimizing policy can improve the constringency speed and the generalization ability of the neural networks. The combined method of principal component analysis and neural networks not only can recognize the target in high efficiency, but also can have the ability of self-study and adapting which can recognize the target in naval battlefield. A simulation is given to prove the efficiency of this algorithmic.

关键词

主成分分析/神经网络/海战场/目标识别

Key words

principal component analysis/neural network/naval battlefield/target recognition

分类

信息技术与安全科学

引用本文复制引用

陈新来..基于主成分分析和神经网络的目标识别[J].现代防御技术,2012,40(2):132-137,6.

现代防御技术

OA北大核心CSTPCD

1009-086X

访问量0
|
下载量0
段落导航相关论文