| 注册
首页|期刊导航|自动化学报|基于Grassmann流形的仿射不变形状识别

基于Grassmann流形的仿射不变形状识别

刘云鹏 李广伟 史泽林

自动化学报2012,Vol.38Issue(2):248-258,11.
自动化学报2012,Vol.38Issue(2):248-258,11.DOI:10.3724/SP.J.1004.2012.00248

基于Grassmann流形的仿射不变形状识别

Affine-invariant Shape Recognition Using Grassmann Manifold

刘云鹏 1李广伟 2史泽林3

作者信息

  • 1. 中国科学院沈阳自动化研究所 沈阳 110016
  • 2. 中国科学院光电信息处理重点实验室 沈阳 110016
  • 3. 辽宁省图像理解与视觉计算重点实验室 沈阳 110016
  • 折叠

摘要

Abstract

Traditional Kendall shape space theory is only applied to similar transform. However, geometric transforms of the object in the imaging process should be represented by affine transform at most situations. We analyze the nonlinear geometry structure of the affine invariant shape space and propose an affine-invariant shape recognition algorithm based on Grassmann manifold geometry. Firstly, we compute the mean shape and covariance for every shape class in the train sets. Then, we construct their norm probability models on the tangent space at each mean shape. Finally, we compute the maximum likelihood class according to the measured object and prior learned shape models. We use the proposed algorithm to recognize shapes in standard shape dataset and real images. Experiment results on MPEG-7 shape dataset show that our recognition algorithm outperforms the algorithm based on Procrustean metric in traditional Kendall shape space theory. Experiment results on real images also show that the proposed algorithm exhibits higher capacity to affine transform than the Procrustean metric based algorithm and can recognize object classes with higher posterior probability.

关键词

形状识别/Grassmann流形/仿射不变/形状空间/形状均值

Key words

Shape recognition/ Grassmann manifold/ affine invariant/ shape space/ mean shapes

引用本文复制引用

刘云鹏,李广伟,史泽林..基于Grassmann流形的仿射不变形状识别[J].自动化学报,2012,38(2):248-258,11.

基金项目

国家自然科学基金(60603097),中国科学院国防创新基金(CXJJ-65)资助 (60603097)

自动化学报

OA北大核心CSCDCSTPCD

0254-4156

访问量0
|
下载量0
段落导航相关论文