| 注册
首页|期刊导航|中山大学学报(自然科学版)|中长期水文预报的模型辨识及预测研究

中长期水文预报的模型辨识及预测研究

路剑飞 于吉涛 陈子燊

中山大学学报(自然科学版)2012,Vol.51Issue(2):107-112,6.
中山大学学报(自然科学版)2012,Vol.51Issue(2):107-112,6.

中长期水文预报的模型辨识及预测研究

Model Identification and Prediction Research of Medium and Long-term Hydrologic Forecast

路剑飞 1于吉涛 2陈子燊1

作者信息

  • 1. 山大学地理科学与规划学院水资源系,广东广州510275
  • 2. 河南理工大学测绘与国土信息工程学院,河南焦作454000
  • 折叠

摘要

Abstract

Model identification of medium and long-term hydrologic forecast is studied in terms of pre-treatment, data length and ways of modeling which are taken as primary factors for the prediction results. Based on finite sampling information criterion (FSIC) , combined information criterion (CIC) is utilized to choose the proper order of the model. Kalman filtering is also used for nonlinear prediction. It is concluded that; 1) In model identification, reasonability of the pretreatment should be tested through the prediction results from the model if it significantly reduces the complexity of the model. 2) Data length of modeling should be long enough to reflect inherent oscillations of the time series while excessive amount brings in extra complexity, more time-consuming and less robustness. 3) Sliding model is better for larger flux and the streamflow peaks prediction, and sacrifices the precise of predicting relatively low run-off. 4) Kalman filtering used as a prediction method of runoff can remarkably raise the forecast effects in any sections of the range with the accuracy rate of peak-prediction up to 63.64%.

关键词

中长期水文预报/模型辨识/CIC/Klman滤波

Key words

hydrologic forecast/ model identification/ CIC/ Kalman filtering

分类

地球科学

引用本文复制引用

路剑飞,于吉涛,陈子燊..中长期水文预报的模型辨识及预测研究[J].中山大学学报(自然科学版),2012,51(2):107-112,6.

基金项目

广东省水利科技创新研究资助项目(2011370004209292) (2011370004209292)

中山大学学报(自然科学版)

OA北大核心CSCDCSTPCD

0529-6579

访问量0
|
下载量0
段落导航相关论文