| 注册
首页|期刊导航|重庆大学学报:自然科学版|免疫遗传优化Elman神经网络的旋转机械故障诊断

免疫遗传优化Elman神经网络的旋转机械故障诊断

陈法法 汤宝平 黄庆卿

重庆大学学报:自然科学版2012,Vol.35Issue(5):7-13,7.
重庆大学学报:自然科学版2012,Vol.35Issue(5):7-13,7.

免疫遗传优化Elman神经网络的旋转机械故障诊断

Rotating machinery fault diagnosis based on Elman neural network optimized by immune genetic algorithm

陈法法 1汤宝平 1黄庆卿1

作者信息

  • 1. 重庆大学机械传动国家重点实验室,重庆400044
  • 折叠

摘要

Abstract

As it's difficult to get comprehensive fault information with traditional machine model in the interrelated process of fault knowledge in rotating machinery fault diagnosis, an immune genetic algorithm (IGA) is proposed to optimize Elman neural network. Fault vibration signals are decomposed into several stationary intrinsic mode functions (IMF) first, then the instantaneous amplitude energy of the IMF which has the fault characteristics are computed and regarded as the input characteristic vector of the Elman neural network optimized by IGA algorithm for fault classification. EMD decomposition adaptively isolates fault vibration signals from original signals. IGA algorithm has more superior performance on global optimization and convergence speed. So it can improve the fault diagnosis accuracy and the adaptive dynamic memory of the Elman neural network. The result of rolling-bearings fault simulation experiments show that, compared with traditional fault diagnosis model, the proposed method significantly improves the diagnostic accuracy and generalization ability of the typical failure of the rolling-bearings.

关键词

遗传算法/Elman神经网络/旋转机械/故障诊断

Key words

genetic algorithms/Elman neural network/rotating machinery/fault diagnosis

分类

机械制造

引用本文复制引用

陈法法,汤宝平,黄庆卿..免疫遗传优化Elman神经网络的旋转机械故障诊断[J].重庆大学学报:自然科学版,2012,35(5):7-13,7.

基金项目

重庆市自然科学杰出青年基金计划资助项目 ()

重庆市科技攻关计划资助项目 ()

重庆大学学报:自然科学版

OA北大核心CSCDCSTPCD

1000-582X

访问量0
|
下载量0
段落导航相关论文