| 注册
首页|期刊导航|计算机工程|贝叶斯模型下基于SIFT特征的人脸识别

贝叶斯模型下基于SIFT特征的人脸识别

张龙媛 陈莹

计算机工程2012,Vol.38Issue(12):125-128,4.
计算机工程2012,Vol.38Issue(12):125-128,4.DOI:10.3969/j.issn.1000-3428.2012.12.037

贝叶斯模型下基于SIFT特征的人脸识别

Face Recognition Based on SIFT Feature in Bayesian Model

张龙媛 1陈莹1

作者信息

  • 1. 江南大学轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

To handle the influences brought by the change of pose and expression. Scale Invariant Feature Transform(SIFT) descriptors, which is rotating and scale invariant, is applied to measure the similarity between corresponding sub-regions of two faces, and the probabilistic similarity models of the same or different faces under various deformations are built with Gaussian Mixture Model(GMM). Then, a probabilistic frame which is based on Bayesian formula is established to get the recognition results, combining with the weight of each sub-region which is decided by their peculiarities. Experimental results indicate that the proposed method outperforms the traditional SIFT-based method when the variation of the pose or expression is large.

关键词

人脸识别/尺度不变特征变换描述子/贝叶斯概率模型/姿态/表情/子区域

Key words

face recognition/ Scale Invariant Feature Transform(SIFT) descriptor/ Bayesian probabilistic model/ pose/ expression/ sub-region

分类

信息技术与安全科学

引用本文复制引用

张龙媛,陈莹..贝叶斯模型下基于SIFT特征的人脸识别[J].计算机工程,2012,38(12):125-128,4.

基金项目

国家自然科学基金资助项目(61104213) (61104213)

江苏省自然科学基金资助项目(BK2011146) (BK2011146)

上海变通大学系统控制与信息处理教育部重点实验室开放课题基金资助项目(SCIP2011008) (SCIP2011008)

计算机工程

OACSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文