| 注册
首页|期刊导航|计算机工程与应用|小波神经网络在基坑变形预测的研究与应用

小波神经网络在基坑变形预测的研究与应用

王博 商岸帆 郭晨 罗超 罗文浪

计算机工程与应用2012,Vol.48Issue(19):225-229,5.
计算机工程与应用2012,Vol.48Issue(19):225-229,5.DOI:10.3778/j.issn.1002-8331.2012.19.051

小波神经网络在基坑变形预测的研究与应用

Research and application on prediction deformation of foundation pit based on wavelet neural network

王博 1商岸帆 2郭晨 1罗超 3罗文浪1

作者信息

  • 1. 井冈山大学电子与信息工程学院,江西吉安343009
  • 2. 中国水电顾问集团西北勘测设计研究院,西安710065
  • 3. 井冈山大学现代教育技术中心,江西吉安343009
  • 折叠

摘要

Abstract

In order to solve the ubiquitous problems on cable-stayed bridge's loading test which are expensive cost and long testing time, this paper builds a practical cable-stayed bridge's finite element model, analyzes the mechanics characteristics of cable-stayed bridge, and puts forward a method of loading test conditions' merging. Finally, Dezhou bridge's loading tests are finished with the merging method. The research results show that for cable-stayed bridges, beam maximum moment condition and beam maximum deflection condition can combine into one condition: and tower maximum moment condition and top tower horizontal displacement can combine into one condition. The merging method can be applied to practical bridge's loading test and can popularize to other long-span bridge type' s loading test. In summery, the research result has a wide application prospect.

关键词

基坑变形/工程安全/预测研究/小波神经网络/参数优化

Key words

pit deformation/ engineering safe/ predict research/ wavelet neural network/ parameter optimization

分类

信息技术与安全科学

引用本文复制引用

王博,商岸帆,郭晨,罗超,罗文浪..小波神经网络在基坑变形预测的研究与应用[J].计算机工程与应用,2012,48(19):225-229,5.

基金项目

国家自然科学基金(No.61063007) (No.61063007)

江西省教育厅科技计划项目(No.GJJ11530) (No.GJJ11530)

江西省高等学校重点学科项目. ()

计算机工程与应用

OACSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文