| 注册
首页|期刊导航|计算机应用研究|基于PSO-RBF神经网络的模拟电路诊断

基于PSO-RBF神经网络的模拟电路诊断

宋丽伟 彭敏放 田成来 沈美娥

计算机应用研究2012,Vol.29Issue(1):72-74,111,4.
计算机应用研究2012,Vol.29Issue(1):72-74,111,4.DOI:10.3969/j.issn.1001-3695.2012.01.019

基于PSO-RBF神经网络的模拟电路诊断

Analog circuit diagnosis based on particle swarm optimization radial basis function network

宋丽伟 1彭敏放 1田成来 1沈美娥2

作者信息

  • 1. 湖南大学电气与信息工程学院,长沙410082
  • 2. 北京信息科技大学,北京100101
  • 折叠

摘要

Abstract

In order to improve the speed and accuracy of analog circuit fault diagnosis using radial basis funtion neural network (RBFNN) , this paper proposed a new fault diagnosis method based on RBFNN optimized by particle swarm optimization (PSO). Trained RBFNN by the PSO algorithm which overcame the shortcomings that structure and parameters of neural network were hard to be set. Preprocessed the response signals of analog circuit by wavelet packet transform as the fault feature. The simulation result shows that this method which has higher diagnostic accuracy and faster convergence speed is effective for fault location.

关键词

模拟电路/故障诊断/径向基神经网络/粒子群算法/小波包分解

Key words

analog circuit/ fault diagnosis/ radial basis function network/ particle swarm optimization/ wavelet packet

分类

信息技术与安全科学

引用本文复制引用

宋丽伟,彭敏放,田成来,沈美娥..基于PSO-RBF神经网络的模拟电路诊断[J].计算机应用研究,2012,29(1):72-74,111,4.

基金项目

国家自然科学基金资助项目(60973032,60673084) (60973032,60673084)

湖南省自然科学基金重点资助项目(10JJ2045) (10JJ2045)

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文