| 注册
首页|期刊导航|计算机应用研究|结合聚类思想神经网络文本分类技术研究

结合聚类思想神经网络文本分类技术研究

朱云霞

计算机应用研究2012,Vol.29Issue(1):155-157,3.
计算机应用研究2012,Vol.29Issue(1):155-157,3.DOI:10.3969/j.issn.1001-3695.2012.01.044

结合聚类思想神经网络文本分类技术研究

Text classification algorithm research based on clustering and neural network

朱云霞1

作者信息

  • 1. 南京大学信息管理系,南京210093;南京人口管理干部学院信息科学系,南京210042
  • 折叠

摘要

Abstract

This paper analyzed the general model of text categorization system technology, after the application of the mutual information feature extraction, proposed a text classification algorithm based on a sample center radiate basis function (RBF) neural network, and introduced the core idea of clustering algorithm, to improve the back-propagation (BP) neural network classification algorithm convergence slower shortcomings. Experimental results show that, compared with BP network,RBF network not only has higher speed and stronger nonlinear mapping capacity t but also has faster convergence speed and better accuracy on classification effect. Combining the clustering thought, RBF text classification algorithm has larger theory research value and practical application prospect.

关键词

文本分类/神经网络/聚类算法/互信息量

Key words

text classification/ neural network/ clustering algorithm/ mutul information

分类

信息技术与安全科学

引用本文复制引用

朱云霞..结合聚类思想神经网络文本分类技术研究[J].计算机应用研究,2012,29(1):155-157,3.

基金项目

江苏省高校自然科学研究计划资助目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文