| 注册
首页|期刊导航|四川大学学报:工程科学版|基于进化算法的带约束混合动力系统多目标优化

基于进化算法的带约束混合动力系统多目标优化

杨观赐 李少波 璩晶磊 钟勇 于新宝

四川大学学报:工程科学版2012,Vol.44Issue(3):141-146,6.
四川大学学报:工程科学版2012,Vol.44Issue(3):141-146,6.

基于进化算法的带约束混合动力系统多目标优化

Constrained Parallel Hybrid System Multi-objective Optimization Based on Evolutionary Algorithm

杨观赐 1李少波 1璩晶磊 2钟勇 3于新宝2

作者信息

  • 1. 贵州大学现代制造技术教育部重点实验室贵州大学,贵州贵阳550003 中国科学院成都计算机应用研究所,四川成都610041
  • 2. 贵州大学现代制造技术教育部重点实验室贵州大学,贵州贵阳550003
  • 3. 中国科学院成都计算机应用研究所,四川成都610041
  • 折叠

摘要

Abstract

In order to obtain a method to avoid transforming multi-objective functions into a single objective evaluation function for hybrid system multi-objective optimization problem,the parallel hybrid electric vehicle model was analyzed,the multi-objective optimization mathematical model of constrained hybrid system was established,and the optimization objectives,parameters and constraints were given.A multi-objective evolutionary algorithm for constrained parallel hybrid system optimization based on NSGA-Ⅱ(cPHS-NSGA) was proposed,which adopted the Pareto dominated principle to determine solutions without specifying weight coefficient for each objective.The simulation optimization results showed that compared with the old system,the fuel consumption per 100 km dropped by an average of 0.25% and the emissions fell by an average of 2.75%.Battery charging efficiency distribution changed from [0.8,0.9] to [0.85,0.9] and the range of discharge efficiency changed from [0.82,1.0] to [0.95,1.0].The cPHS-NSGA was capable to improve the performance of parallel hybrid system.

关键词

多目标优化/混合动力系统/混合动力汽车/进化算法

Key words

multi-objective optimization/hybrid system/hybrid electric vehicle/evolutionary algorithm

分类

交通运输

引用本文复制引用

杨观赐,李少波,璩晶磊,钟勇,于新宝..基于进化算法的带约束混合动力系统多目标优化[J].四川大学学报:工程科学版,2012,44(3):141-146,6.

基金项目

教育部新世纪优秀人才支持计划资助项目 ()

国家“863”计划资助项目 ()

“十二五”国家科技支撑计划资助项目 ()

贵州省科学技术基金资助项目 ()

四川大学学报:工程科学版

OA北大核心CSCDCSTPCD

2096-3246

访问量0
|
下载量0
段落导航相关论文