| 注册
首页|期刊导航|四川大学学报:工程科学版|基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法

基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法

蒋红海 殷国富 刘培勇 尹湘云

四川大学学报:工程科学版2012,Vol.44Issue(3):147-152,6.
四川大学学报:工程科学版2012,Vol.44Issue(3):147-152,6.

基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法

Defect Detection on Magnetic Tile Surfaces Based on Fast Discrete Curvelet Transformand Support Vector Machine

蒋红海 1殷国富 1刘培勇 1尹湘云1

作者信息

  • 1. 四川大学制造科学与工程学院,四川成都610065
  • 折叠

摘要

Abstract

Difficulties exist in automatically inspecting surface defects because of the low intensity image contrast.To overcome these difficulties,a textures analysis method for detecting defects on the magnetic tile surfaces was described.In this methodology the original image was divided into several equal sized squares,and decomposed based on a fast discrete curvelet transform(FDCT) at different scales and orientations.Then the l2 norms on the curvelet coefficients were calculated as the feature vector for support vector machine(SVM) classifier.The experimental results showed that the defects retrieval accuracy achieved 83% when defects accounted for more than 1/64 of magnetic tile image.

关键词

Curvelet变换/表面缺陷/纹理/支持向量机

Key words

Curvelet transform/surface defects/textures/support vector machines

分类

信息技术与安全科学

引用本文复制引用

蒋红海,殷国富,刘培勇,尹湘云..基于Curvelet变换和支持向量机的磁瓦表面缺陷识别方法[J].四川大学学报:工程科学版,2012,44(3):147-152,6.

基金项目

国家科技支撑计划课题资助项目 ()

四川省高新技术产业重大关键技术资助项目 ()

四川大学学报:工程科学版

OA北大核心CSCDCSTPCD

2096-3246

访问量0
|
下载量0
段落导航相关论文