四川师范大学学报(自然科学版)2012,Vol.35Issue(3):425-429,5.DOI:10.3969/j.issn.1001-8395.2012.03.029
Klein-Gordon-Hartree方程驻波的不稳定性
Instability for the Standing Wave of Klein-Gordon-Hartree Equation
摘要
Abstract
The aim of this paper is to study the standing wave of the Klein-Gordon-Hartree equation (δ)2u/(δ)t2- △u + ωu- (|x|-γ* | u|2)u =0, x∈RA. Firstly, a constrained variational problem is constructed to get the existence and variational characterization of the ground state. Moreover, based upon the variational characterization of the ground state, it is proved that there exists a sequence of solutions of the Klein-Gordon-Hartree equation such that the initial data of the solutions are close to the ground state and the solutions blow up in finite time. Hence the instability of the standing wave is obtained.关键词
Klein-Gordon-Hartree方程/驻波/基态/不稳定Key words
Klein-Gordon-Hartree equation/ standing wave/ ground state/ instability分类
数理科学引用本文复制引用
李晓光..Klein-Gordon-Hartree方程驻波的不稳定性[J].四川师范大学学报(自然科学版),2012,35(3):425-429,5.基金项目
国家自然科学基金(11071177)和四川省杰出青年基金(2012JQ0011)资助项目 (11071177)